Coding And Scripting Techniques For FSM Designs With
Synthesis-Optimized, Glitch-Free Outputs

SNUG-2000
Boston, MA
Voted Best Paper
2" Place

Clifford E. Cummings

Sunburst Design, Inc.

ABSTRACT

A common synthesis recommendation is to code modules with a cloud of combinational logic on
the module inputs and registered logic on all of the module outputs. FSM designs often include
outputs generated from combinational logic based on the present state or combinational Mealy
outputs. This paper details design and synthesis techniques that support the coding and synthesis
scripting of glitch-free registered outputs for Finite State Machine designs.

1.0 Introduction

Efficient state machine design using a Hardware Description Language (HDL), such as Verilog,
can take many forms [1][2]. Are there specific forms that lend themselves well to synthesis? This
paper describes some common coding styles and highlights two coding styles with registered
outputs that are well suited for commonly used synthesis techniques.

This paper will briefly describe coding styles that generate combinational logic outputs and then

will detail coding styles that generate registered outputs and describe why the registered output
coding styles are often beneficial to synthesis strategies.

2.0 Basic FSM Structure

A typical block diagram for a Finite State Machine (FSM) is shown in Figure 1.

inputs (Mealy State Machine Only)
e ddmmmmmm |
combinational sequential : combinational
logic logic I logic
I
— D 7].-D
Next next Present state Output | OUtPUts
State > State > Logic >
state Logic FF's
> >
clock

Figure 1 - FSM Block Diagram

A Moore state machine is an FSM where the outputs are only afunction of the present state.

A Mealy state machineis an FSM where one or more of the outputs are a function of the present
state and one or more of the inputs.

Both Moore and Mealy FSM's have been successfully implemented in digital designs. How the
outputs are generated for these state machines is an interesting topic. Outputs are sometimes
generated by combinational logic based on comparisons with a set of states, and sometimes
outputs can be derived directly from individual state bits.

SNUG Boston 2000 2 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

. .. E t wh ted,
The code in Example 1 uses a common, efficient outpats “rd and

Verilog coding style to implement the state diagram “ds” equal 0
shown in Figure 2.

This coding style is sometimes referred to as atwo-
always block coding style with continuous %
assignment outputs. The first always block in this

exampleis used to generate the sequential state

register, the second always block is used to generate e @
the combinational next state logic, and the

continuous assignments are used to generate the
combinational output logic.

ws=1

Figure 2 - FSM1 State Diagram

module fsmla (ds, rd, go, ws, clk, rst n);
output ds, rd;
input go, ws;
input clk, rst n;

parameter DLE = 2'b0O,
READ = 2'bO01,
DLY = 2'blO,
DONE = 2'bll;

reg [1:0] state, next;

always @(posedge clk or negedge rst n) <4 S&Heregﬁten
if (!rst n) state <= IDLE; sequential
else state <= next; always block

always @(state or go or ws) begin
next = 2'bx; <‘\\\\\\\\\\
case (state)

<

Next state,
IDLE: if (go) next = READ; Combinationa| \
else next = IDLE; always block
READ: next = DLY;
DLY: if (ws) next = READ;
else next = DONE;
DONE: next = IDLE;

endcase A Continuous
end / assignment
, outputs
assign rd (state==READ || state==DLY);

assign ds (state==DONE) ;
endmodule

Example 1 - FSM Coding Style - Two-always blocks with continuous assignment outputs

SNUG Boston 2000 3 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

scallion
铅笔

scallion
铅笔

scallion
铅笔

scallion
铅笔

scallion
铅笔

scallion
铅笔

The code in Example 2 is used to synthesize the same basic logic as Example 1, but the

generation of the outputs is accomplished by moving the output equations into the same always
block that is used to generate the combinational next state logic. Thisisacommonly used two-
always block coding style.

module fsml (ds, rd, go, ws, clk, rst n)

output ds, rd;
input go, ws;
input clk, rst n;
reg ds, rd;

parameter [1:0] IDLE = 2'b0O,
READ = 2'b01,
DLY = 2'blO,
DONE = 2'bll;

reg [1:0] state, next;

always @(posedge clk or negedge rst n)
if (lrst n) state <= IDLE;
else state <= next;

always @(state or go or ws) begin
next = 2'bx;
ds = 1'b0;
rd = 1'b0;
case (state)

IDLE: if (go) next = READ;
else next = IDLE;
READ: begin rd = 1'bl;
next = DLY;

end
DLY: begin rd = 1'bl;
if (ws) next = READ;
else next = DONE;

end
DONE: begin ds = 1'bl;
next = IDLE;

end

endcase
end
endmodule

.
7

4— State register,

T~

sequential
always block

Next state & outputs,
combinational always
block

Example 2 - FSM Coding Style - Two-always blocks with combined output assignments

SNUG Boston 2000 4 FSM Designs With Synthesis-Optimized,

Rev 1.2

Glitch-Free Outputs

scallion
铅笔

The combinational outputs generated by these two coding styles (Example 1 and Example 2)
suffer two principal disadvantages:

1. Combinational outputs can glitch between states.
2. Combinational outputs consume part of the overall clock cycle that would have been
available to the block of logic that is driven by the FSM outputs.

When module outputs are generated using combinational logic, there islesstime for the
receiving module to pass signal's through inputs and additional combinational logic before they
must be clocked.

3.0 Partitioning For Synthesis

No combinational
logic on the outputs

A popular and proven technique for partitioning a
design for synthesisis to partition the design so U W
that all outputs are registered and all
combinational logic ison the input-side of a :D- registered !
module as shown in Figure 3. Thisis sometimes outputs |
>Set|4(;1;2tial |

referred to as "cloud-register” partitioning.
W

A variation on the same synthesis techniqueisto

partition the design so that all combinational l0gic — t---- - .

is on the inputs or between registered stages Figure 3 - "Cloud-register" module partition

within the module as shown in Figure 4.

module . .
__ No combinational

: logic on the outputs
1
1
:D- :D- registered |
outputs :
1

Sequential Sequential

= logic = logic

Figure 4 - Multi-stage modul e partition with registered outputs
The reason this technique isimportant is not that it necessarily makes a design any better, but that
it greatly simplifies the task of constraining a design for synthesis.

Designs can be and have been successfully completed with combinational logic on both the
inputs and the outputs of module partitions, but such designs complicate the task of constraining
adesign to meet timing requirements. T

Asshownin Figure5, if adesign requires a 10ns clock cycle, and if the output combinational
logic of module A consumes 3.5ns, then the inputs of modules C and D and some of the inputs of
module E must be constrained to use only 6.5ns (including setup time on registered elements).

SNUG Boston 2000 5 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

scallion
铅笔

scallion
铅笔

scallion
铅笔

scallion
铅笔

scallion
铅笔

scallion
铅笔

. 10 lock |
If module B consumes 5nsin the p s coeroyee \

output combinational logic, then

the other inputs of module E must |
be constrained to use only 5ns i

(including setup time on registered

elements).

module A module C

For this simple 5-module design,
the task of making these
constraints is not too difficult, but
imagine having to constrain dozens
of inputs on the tens or hundreds of
modules of alarger design, and
making sure al of the constraints ~ modues N) OIS N module E
have been correctly set. Thisisone !

of the motivations behind
registered modul e outputs.

Different input
constraints
required

5

Figure 5 - Constraining combinational outputs that drive
combinational inputs

4.0 Synthesis Time Budgeting

In a paper entitled "Evolvable Makefiles and Scripts for Synthesis®, [3] Ekstrandh and Bell,
describe a clever time-budgeting technique for synthesizing many modules by constraining inputs
and outputs to sequential modules, and applying time-budget allotments to pure combinational

modules. If pure combinational logic modules are removed and all sequential module outputs are
registered, techniques similar to those described by Ekstrandh and Bell become even easier to
implement.

One major argument against registered outputs is that redundant combinational 1ogic might be
required at the inputs of multiple receiving modules. In contrast, moving the combinational logic
from some module outputs to the inputs of receiving modules might help suggest a different,
more optimal partitioning of a design.

The best reason for moving combinational logic away from module outputs is that it significantly

reduces synthesis scripting efforts that can lead to more easily meeting overall timing constraints.

Tight constraints on output combinational logic in adriving module and tight timing constraints
on input combinational logic in areceiving module generally does not yield the same efficient
logic that could be inferred if all of the combinational logic could be optimized together with a
larger overall timing constraint.

SNUG Boston 2000 6 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

scallion
线条

scallion
线条

scallion
线条

scallion
线条

5.0 Registering FSM Outputs

Two good methods for coding FSMs so that all module outputs are registered include, (1)
generating and registering "next-outputs’, and (2) Encoding the state variables so that each

output is one of the encoded bits of the registered state variable.

module fsmlb (ds, rd, go, ws, clk, rst n);
output ds, rd;
input go, ws;
input clk, rst n;
reg ds, rd;

parameter [1:0] IDLE = 2'b0O,
READ = 2'b01,
DLY = 2'blO,
DONE = 2'bll;

reg [1:0] state, next;

always @(posedge clk or negedge rst n) 4
if (lrst n) state <= IDLE;

else state <= next;

always @(state or go or ws) begin
next = 2'bx;
case (state)

\

IDLE: if (go) next = READ;

else next = IDLE;

READ: next = DLY;

DLY: if (ws) next = READ;

else next = DONE;

DONE: next = IDLE;
endcase

end

always @(posedge clk or negedge rst n)
if (!rst n) begin

ds <= 1'b0; —
rd <= 1'b0;
end

else begin
ds <= 1'b0;
rd <= 1'b0;
case (state)
IDLE: if (go) rd <= 1'bl;

READ: rd <= 1'bl;
DLY: if (ws) rd <= 1'bl;
else ds <= 1'bl;
endcase
end
endmodule

State register,
sequential
always block

Next state,
combinational
always block

Registered
outputs
sequential
always block

Example 3 - FSM Coding Style - Three-always block coding style

5.1 Three Always Block FSM

SNUG Boston 2000 7
Rev 1.2

FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

The first method commonly used to register
the FSM outputsisto code atwo always
block FSM, the same asin Example 1, but
instead of generating the outputs using
continuous assignments, code a third block
as a sequential always block to register the
"next outputs' as shown in Example 3.

This method requires careful coding since
this style forces an engineer to examine the
present state and the inputs to determine
what the "next outputs’ will be. This
method is somewhat error prone, but works
fineif the outputs are properly coded.

The block diagram in Figure 6 shows the

combinational sequential
logic logic

1T

inputs

state

Present

State
= FF's
sequential
next logic
outputs
> :EI outputs
lock Output
cloc FF's
>

Figure 6 - FSM with registered outputs

two sequential and one combinational logic blocks that are generated by the three aways blocks.

5.2 Output Encoded FSM

A second interesting method for registering
the FSM outputs is to select a state encoding
that forces the outputs to be driven by
individual state-register bits as shown in the
block diagram of Figure 7.

A structured method for encoding the
outputs as part the state encoding is outlined
in the following steps:

1. Count the number of outputs (x) and
the number of states (y) in the state
machine and start by making atable
with y+1 rows and x+1 columns.

2. Starting at the second row in the | eft-
hand column, make alist of al the
FSM states, moving down the column
for each state in the state machine.
Thiswill fill the left-hand column

except for the top left-hand column
cell.

SNUG Boston 2000
Rev 1.2

combinational sequential
logic logic

state &
outputs

>

inputs

Present

> State

FF's

clock

Figure 7 - FSM with registered outputs encoded as state
bits

of outputs
X=2

of states
y=4

table size
3 columns by 5 rows

Figure 8 - Extracting table information from a state
diagram

8 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

3. Starting at the first row, second column and working to the right, list each FSM output as a
separate column header.

4—' Output columns |

——
State ds rd
IDLE 0 0
READ 0 1
DLY 0 1
DONE 1 0

State
rows

Table 1l - Starting state table (redundant output patterns

4. Placea"1" in each output column where an

are circled)

output is high for the listed states and place a
"0" in each output column where an output is
low for the listed states.

5. After filling out the entire table, search for

output patterns that are the same for more
than one state. If there are no duplicate patterns, use the output patterns in the table as state

encodings. If al of the encodings are unique, no additional state bits are necessary and each
state bit not only represents part of the state encoding, it aso represents what will become a
registered output bit.

state
10

state

state
01

01

Redundant
states

Figure 9 - One-hot output encoded redundant states

Note: FSM inputs do not affect the state encodings. Only the number of states and the number of

outputs affect the state encodings.

In general, the output patterns will not be unique to any one state and the following additional
steps will be required:

6. Circlethe duplicate output patternsin the table as shown in Table 1.

7. If there are two output patterns that are the same, one additional state bit will be required to
create unique state encodings. If there are three or four output patterns that are the same, two
additional state bitswill be required to create unique state encodings. If there are between
five and eight output patterns that are the same, three additional state bits will be required to

create unique state encodings, €tc.

state x0 ds Rd
IDLE 0 0
READ 0 1
DLY 0 1
DONE 1 0

Table 2 - State table after adding extra state bit column

SNUG Boston 2000

Rev 1.2

9

FSM Designs With Synthesis-Optimized,

Glitch-Free Outputs

8. Add ablank column between the state names state
column and the first output column and label
this column "x0." Add another column for
each additional required state bit, labeling
each column "x1", "x2", etc.

210 o
state x0 ds rd —
IDLE 0 0 0
READ 0 0 1
DLY 1 0 1
DONE 0 1 0 state

101 <-\ Unique
Table 3 - State table with unique state encodings states

i] Figure 10 - Output Encoded FSM with extra bits to create
Fill the added columns with all zeros except for unique state encodings

the circled redundant-encodings rows. Add

binary encodings into the extra columns of the redundant-encoding rows to create unique state

encodings as shown in Figure 10.

module fsmla ffol (ds, rd, go, ws, clk, rst n);
output ds, rd;
input go, ws;
input clk, rst n;

// state bits = x0 ds rd

parameter [2:0] IDLE = 3'b0_00,
READ = 3'b0 01,
DLY = 3'bl 01,
DONE = 3'b0_10;
reg [2:0] state, next;
always @(posedge clk or negedge rst n) 4
if (lrst n) state <= IDLE;
else state <= next;

State register,
sequential
always block

always @(state or go or ws) begin
next = 3'bx;

case (state) \
IDLE: if (go) next READ;

= Next state,
READ: else EZ:E = ;i;‘E’:’ combinational
DLY: if (ws) next = READ; always block
else next = DONE;
DONE: next = IDLE;
endcase Outputs are
end assigned directly

assign {ds,rd} = state[l:0];

from the state-

register bits

endmodule
Example 4 - FSM Coding Style - Output Encoded FSM
SNUG Boston 2000 10 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

The state encodings in Table 3 will now be used to make Verilog parameter assignmentsto
define each state encoding.

Now that the outputs have been incorporated into the state encodings, one or more continuous
assignment statements can directly drive the outputs, where the actual state bits are used to drive
the outputs. Since no additional glue logic isrequired to drive the outputs, the outputs will now
be glitch-free.

The outputs of the Verilog state machine are now easily coded by making bit-select assignments
from the state vector to each output, or by concatenating all of the outputs together into one
continuous assignment and assigning al of the significant state bits to the outputs as shown in
Example 4. If extra state bits were required to create unique state encodings, the output bits will
be the LSBs of the state vector.

6.0 Mealy Outputs

Asynchronous Mealy outputs violate the synthesis guideline to partition a design into "cloud-
register" groupings. An asynchronous Mealy output is an output that is a function of the present
state and one or more inputs, which requires combinational logic to be placed on the Mealy
outputs, forming a cloud of combinational logic after the register, as shown on the FSM module
in the block diagram of Figure 11.

FSM module

Mealy input

module C

Figure 11 - FSM Mealy output driving combinational inputs

It is frequently feasible to move asynchronous Mealy outputs from an FSM module to the input
or inputs of one or more modules (such as modules C and D as shown in Figure 12) that would
have been driven by the Mealy outputs.

SNUG Boston 2000 11

Rev 1.2

FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

Mealy input module C

FSM module

Figure 12 - Mealy logic partitioned separate from the FSM output

Transferring the Mealy logic from the output of the FSM module to the inputs of the driven
modules might cause extralogic to be inferred because the logic has to be taken from asingle
output-"cloud" and added to potentially multiple input-"clouds.” The undesirable, small increase
in area due to the addition of redundant logic is generally offset by significantly smplifying the
design effort and synthesis scripts.

7.0 Conclusions

e Partitioning designs so that there is no combinational logic on the outputs of an FSM
significantly simplifies the task of synthesizing a multi-module design.

e Coding FSMswith registered outputs eliminates combinational output logic.
e Coding FSMswith registered outputs insures that the outputs will be glitch-free.

e The Output Encoded FSM style is an efficient technique for coding FSMs to drive registered
outputs directly from the state register bits.

References

[1] S. Golson, "State Machine Design Techniques for Verilog and VHDL," Synopsys Journal
of High-Level Design, September 1994, pp. 1-48.

[2] C.E. Cummings, "State Machine Coding Styles for Synthesis," SNUG (Synopsys Users
Group) 1998 Proceedings, section-TB1 (3" paper), March 1998.

[3] A. Ekstrandh, W. Béll, "Evolvable Makefiles and Scripts for Synthesis," SNUG (Synopsys
Users Group) 1997 Proceedings, section-C1 (2™ paper), February 1997.

SNUG Boston 2000 12 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

Revision 1.2 (May 2002) - What Changed?

Example 4 incorrectly showed the combinational assignment of next = 2'bx; The correct
assignment should have been next = 3'bx;

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 20 years of ASIC, FPGA and system design experience and 10 years of Verilog,
synthesis and methodol ogy training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (V SG) since 1994, chaired
the VSG Behaviora Task Force, which was charged with proposing behavioral and synthesis
enhancements to the Verilog language. Mr. Cummings is also a member of the IEEE Verilog
Synthesis Interoperability Working Group, and the Accellera SystemV erilog Standards Group.

Mr. Cummings holds a BSEE from Brigham Y oung University and an MSEE from Oregon State
University.

Email address: cliffc@sunburst-design.com
An updated version of this paper can be downloaded from the web site: www.sunburst-
design.com/papers

(Data accurate as of May 28", 2002)

SNUG Boston 2000 13 FSM Designs With Synthesis-Optimized,
Rev 1.2 Glitch-Free Outputs

